

Welcome to the ASAP Python Toolbox’s documentation!

Contents:

	The ASAP Python Toolbox
	Overview

	Dependencies

	Easy Installation

	Obtaining the Source Code

	Building & Installation

	Instructions & Use

	asaptools package
	Submodules

	Change Log
	Version 0.7.0

	Version 0.6.0

	Version 0.5.4

	Version 0.5.3

	Version 0.5.2

	Version 0.5.1

	Version 0.5.0

	Version 0.4.2

	Version 0.4.1

	Version 0.4

	Version 0.3

	Product License

Indices and tables

	Index

	Module Index

	Search Page

The ASAP Python Toolbox

[image: Circle] [https://circleci.com/gh/NCAR/ASAPPyTools] [image: Codecov] [https://codecov.io/gh/NCAR/ASAPPyTools] [image: Documentation Status] [https://asappytools.readthedocs.io/en/latest/?badge=latest] [image: Python Package Index] [https://pypi.org/project/asaptools/]

The ASAP Python Toolbox is a collection of stand-alone tools for doing simple
tasks, from managing print messages with a set verbosity level, to
keeping timing information, to managing simple MPI communication.

	COPYRIGHT

	2016-2019, University Corporation for Atmospheric Research

	LICENSE

	See the LICENSE.txt file for details

Send questions and comments to Kevin Paul (kpaul@ucar.edu).

Overview

The ASAP (Application Scalability And Performance) group at the National
Center for Atmospheric Research maintains this collection of simple
Python tools for managing tasks commonly used with its Python software.
The modules contained in this package include:

	vprinter

	For managing print messages with verbosity-level specification

	timekeeper

	For managing multiple “stop watches” for timing metrics

	partition

	For various data partitioning algorithms

	simplecomm

	For simple MPI communication

Only the simplecomm module depends on anything beyond the basic built-in
Python packages.

Dependencies

All of the ASAP Python Toolbox tools are written to work with Python 2.6+ (including
Python 3+). The vprinter, timekeeper, and partition modules are pure
Python. The simplecomm module depends on mpi4py (>=1.3).

This implies the dependency:

	mpi4py depends on numpy (>-1.4) and MPI

Easy Installation

The easiest way to install the ASAP Python Toolbox is from the Python
Package Index (PyPI) with the pip package manager:

$ pip install [--user] asaptools

The optional ‘–user’ argument can be used to install the package in the
local user’s directory, which is useful if the user doesn’t have root
privileges.

Obtaining the Source Code

Currently, the most up-to-date source code is available via git from the
site:

https://github.com/NCAR/ASAPPyTools

Check out the most recent tag. The source is available in read-only
mode to everyone, but special permissions can be given to those to make
changes to the source.

Building & Installation

Installation of the ASAP Python Toolbox is very simple. After checking out the
source from the above svn link, via:

$ git clone https://github.com/NCAR/ASAPPyTools

change into the top-level source directory, check out the most recent tag,
and run the Python distutils setup. On unix, this involves:

$ cd ASAPPyTools
$ python setup.py install [--prefix-/path/to/install/location]

The prefix is optional, as the default prefix is typically /usr/local on
linux machines. However, you must have permissions to write to the
prefix location, so you may want to choose a prefix location where you
have write permissions. Like most distutils installations, you can
alternatively install the pyTools with the –user option, which will
automatically select (and create if it does not exist) the $HOME/.local
directory in which to install. To do this, type (on unix machines):

$ python setup.py install --user

This can be handy since the site-packages directory will be common for
all user installs, and therefore only needs to be added to the
PYTHONPATH once.

Instructions & Use

For instructions on how to use the ASAP Python Toolbox, see the
documentation [https://asappytools.readthedocs.io/en/latest/].

asaptools package

The ASAP Python Toolbox

The ASAP Python Toolbox is a collection of stand-alone tools for doing simple
tasks, from managing print messages with a set verbosity level, to
keeping timing information, to managing simple MPI communication.

Copyright 2020 University Corporation for Atmospheric Research

Licensed under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an “AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Send questions and comments to Kevin Paul (kpaul@ucar.edu).

Submodules

	asaptools.vprinter module

	asaptools.timekeeper module

	asaptools.partition module

	asaptools.simplecomm module

asaptools.vprinter module

A module containing the VPrinter class.

This module contains the VPrinter class that enables clean printing to
standard out (or a string) with verbosity-level print management.

Copyright 2020 University Corporation for Atmospheric Research

Licensed under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an “AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

	
class asaptools.vprinter.VPrinter(header='', verbosity=1)[source]

	Bases: object

A Verbosity-enabled Printing Class.

The VPrinter is designed to print messages to standard out, or optionally
a string, as determined by a pre-set verbosity-level and/or on which
parallel rank the VPrinter is instantiated.

	
header

	A string to prepend to any print messages before
they are printed

	Type

	str

	
verbosity

	The verbosity level to use when determining if a
message should be printed

	Type

	int

	
to_str(*args, **kwargs)[source]

	Concatenates string representations of the input arguments.

This takes a list of arguments of any length, converts each argument
to a string representation, and concatenates them into a single string.

	Parameters

	args (list) – A list of arguments supplied to the function. All
of these arguments will be concatenated together.

	Keyword Arguments

	kwargs (dict) – The dictionary of keyword arguments
passed to the function.

	Returns

	
	A single string with the arguments given converted to strings
	and concatenated together (in order). If the keyword
‘header==True’ is supplied, then the ‘header’ string is
prepended to the string before being output.

	Return type

	str

	Raises

	TypeError – If the ‘header’ keyword argument is supplied and is
 not a bool

asaptools.timekeeper module

A module containing the TimeKeeper class.

This module contains is a simple class to act as a time keeper for internal
performance monitoring (namely, timing given processes).

Copyright 2020 University Corporation for Atmospheric Research

Licensed under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an “AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

	
class asaptools.timekeeper.TimeKeeper(time=<built-in function time>)[source]

	Bases: object

Class to keep timing recordings, start/stop/reset timers.

	
_time

	The method to use for getting the time (e.g., time.time)

	
_start_times

	A dictionary of start times for each named timer

	Type

	dict

	
_accumulated_times

	A dictionary of the total accumulated times
for each named timer

	Type

	dict

	
_added_order

	A list containing the name of each timer, in the
order it was added to the TimeKeeper

	Type

	list

	
get_all_times()[source]

	Returns the dictionary of accumulated times on the local processor.

	Returns

	The dictionary of accumulated times

	Return type

	dict

	
get_names()[source]

	Method to return the clock names in the order in which they were added.

	Returns

	The list of timer names in the order they were added

	Return type

	list

	
get_time(name)[source]

	Returns the accumulated time of the given timer.

If the given timer name has never been created, it is created and the
accumulated time is set to zero before returning.

	Parameters

	name – The name or ID of the timer to stop

	Returns

	
	The accumulated time of the named timer (or 0.0 if the
	named timer has never been created before).

	Return type

	float

	
reset(name)[source]

	Method to reset a timer associated with a given name.

If the name has never been used before, the timer is created and the
accumulated time is set to 0. If the timer has been used before, the
accumulated time is set to 0.

	Parameters

	name – The name or ID of the timer to reset

	
start(name)[source]

	Method to start a timer associated with a given name.

If the name has never been used before, the timer is created and
the accumulated time is set to 0.

	Parameters

	name – The name or ID of the timer to start

	
stop(name)[source]

	Stop the timing and add the accumulated time to the timer.

Method to stop a timer associated with a given name, and adds
the accumulated time to the timer when stopped. If the given timer
name has never been used before (either by calling reset() or start()),
the timer is created and the accumulated time is set to 0.

	Parameters

	name – The name or ID of the timer to stop

asaptools.partition module

A module for data partitioning functions.

This provides a collection of ‘partitioning’ functions. A partitioning
function is a three-argument function that takes, as the first argument, a
given data object and, as the second argument, an index into that object and,
as the third argument, a maximum index. The operation of the partitioning
function is to return a subset of the data corresponding to the given index.

By design, partitioning functions should keep the data “unchanged” except for
subselecting parts of the data.

Copyright 2020 University Corporation for Atmospheric Research

Licensed under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an “AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

	
class asaptools.partition.Duplicate[source]

	Bases: asaptools.partition.PartitionFunction

Return a copy of the original input data in each partition.

	
class asaptools.partition.EqualLength[source]

	Bases: asaptools.partition.PartitionFunction

Partition an indexable object by striding through the data.

The initial object is “chopped” along its length into roughly equal length
sublists. If the partition size is greater than the length of the input
data, then it will return an empty list for ‘empty’ partitions. If the
data is not indexable, then it will return the data for index=0 only, and
an empty list otherwise.

	
class asaptools.partition.EqualStride[source]

	Bases: asaptools.partition.PartitionFunction

Partition an object by chopping the data into roughly equal lengths.

This returns a sublist of an indexable object by “striding” through the
data in steps equal to the partition size. If the partition size is
greater than the length of the input data, then it will return an empty
list for “empty” partitions. If the data is not indexable, then it will
return the data for index=0 only, and an empty list otherwise.

	
class asaptools.partition.PartitionFunction[source]

	Bases: object

The abstract base-class for all Partitioning Function objects.

A PartitionFunction object is one with a __call__ method that takes
three arguments. The first argument is the data to be partitioned, the
second argument is the index of the partition (or part) requested, and
third argument is the number of partitions to assume when dividing
the data.

	
class asaptools.partition.SortedStride[source]

	Bases: asaptools.partition.PartitionFunction

Partition an indexable list of pairs by striding through sorted data.

The first index of each pair is assumed to be an item of data (which will
be partitioned), and the second index in each pair is assumed to be a
numeric weight. The pairs are first sorted by weight, and then partitions
are returned by striding through the sorted data.

The results are partitions of roughly equal length and roughly equal
total weight. However, equal length is prioritized over total weight.

	
class asaptools.partition.WeightBalanced[source]

	Bases: asaptools.partition.PartitionFunction

Partition an indexable list of pairs by balancing the total weight.

The first index of each pair is assumed to be an item of data (which will
be partitioned), and the second index in each pair is assumed to be a
numeric weight. The data items are grouped via a “greedy” binning
algorithm into partitions of roughly equal total weight.

The results are partitions of roughly equal length and roughly equal
total weight. However, equal total weight is prioritized over length.

asaptools.simplecomm module

A module for simple MPI communication.

The SimpleComm class is designed to provide a simplified MPI-based
communication strategy using the MPI4Py module.

To accomplish this task, the SimpleComm object provides a single communication
pattern with a simple, light-weight API. The communication pattern is a
common ‘manager’/’worker’ pattern, with the 0th rank assumed to be the
‘manager’ rank. The SimpleComm API provides a way of sending data out from the
‘manager’ rank to the ‘worker’ ranks, and for collecting the data from the
‘worker’ ranks back on the ‘manager’ rank.

PARTITIONING:

Within the SimpleComm paradigm, the ‘manager’ rank is assumed to be responsible
for partition (or distributing) the necessary work to the ‘worker’ ranks.
The partition mathod provides this functionality. Using a partition
function, the partition method takes data known on the ‘manager’ rank and
gives each ‘worker’ rank a part of the data according to the algorithm of the
partition function.

The partition method is synchronous, meaning that every rank (from the
‘manager’ rank to all of the ‘worker’ ranks) must be in synch when the method
is called. This means that every rank must participate in the call, and
every rank will wait until all of the data has been partitioned before
continuing. Remember, whenever the ‘manager’ rank speaks, all of the
‘worker’ ranks listen! And they continue to listen until dismissed by the
‘manager’ rank.

Additionally, the ‘manager’ rank can be considered involved or uninvolved
in the partition process. If the ‘manager’ rank is involved, then the
master will take a part of the data for itself. If the ‘manager’ is
uninvolved, then the data will be partitioned only across the ‘worker’ ranks.

Partitioning is a synchronous communication call that implements a
static partitioning algorithm.

RATIONING:

An alternative approach to the partitioning communication method is the
rationing communication method. This method involves the individual
‘worker’ ranks requesting data to work on. In this approach, each ‘worker’
rank, when the ‘worker’ rank is ready, asks the ‘manager’ rank for a new
piece of data on which to work. The ‘manager’ rank receives the request
and gives the next piece of data for processing out to the requesting
‘worker’ rank. It doesn’t matter what order the ranks request data, and
they do not all have to request data at the same time. However, it is
critical to understand that if a ‘worker’ requests data when the ‘manager’
rank does not listen for the request, or the ‘manager’ expects a ‘worker’
to request work but the ‘worker’ never makes the request, the entire
process will hang and wait forever!

Rationing is an asynchronous communication call that allows the ‘manager’
to implement a dynamic partitioning algorithm.

COLLECTING:

Once each ‘worker’ has received its assigned part of the data, the ‘worker’
will perform some work pertaining to the data it received. In such a case,
the ‘worker’ may (though not necessarily) return one or more results back to
the ‘manager’. The collect method provides this functionality.

The collect method is asynchronous, meaning that each slave can send
its data back to the master at any time and in any order. Since the ‘manager’
rank does not care where the data came from, the ‘manager’ rank simply receives
the result from the ‘worker’ rank and processes it. Hence, all that matters
is that for every collect call made by all of the ‘worker’ ranks, a collect
call must also be made by the ‘manager’ rank.

The collect method is a handshake method, meaning that while the ‘manager’
rank doesn’t care which ‘worker’ rank sends it data, the ‘manager’ rank does
acknowledge the ‘worker’ rank and record the ‘worker’ rank’s identity.

REDUCING:

In general, it is assumed that each ‘worker’ rank works independently from the
other ‘worker’ ranks. However, it may be occasionally necessary for the
‘worker’ ranks to know something about the work being done on (or the data
given to) each of the other ranks. The only allowed communication of this
type is provided by the allreduce method.

The allreduce method allows for reductions of the data distributed across
all of the ranks to be made available to every rank. Reductions are operations
such as ‘max’, ‘min’, ‘sum’, and ‘prod’, which compute and distribute to the
ranks the ‘maximum’, ‘minimum’, ‘sum’, or ‘product’ of the data distributed
across the ranks. Since the reduction computes a reduced quantity of data
distributed across all ranks, the allreduce method is a synchronous method
(i.e., all ranks must participate in the call, including the ‘manager’).

DIVIDING:

It can be occasionally useful to subdivide the ‘worker’ ranks into different
groups to perform different tasks in each group. When this is necessary, the
‘manager’ rank will assign itself and each ‘worker’ rank a color ID. Then,
the ‘manager’ will assign each rank (including itself) to 2 new groups:

	
	Each rank with the same color ID will be assigned to the same group, and
	within this new color group, each rank will be given a new rank ID
ranging from 0 (identifying the color group’s ‘manager’ rank) to the number
of ‘worker’ ranks in the color group. This is called
the monocolor grouping.

	
	Each rank with the same new rank ID across all color groups will be assigned
	to the same group. Hence, all ranks with rank ID 0 (but different color
IDs) will be in the same group, all ranks with rank ID 1 (but different
color IDs) will be the in another group, etc. This is called the
multicolor grouping. NOTE: This grouping will look like grouping (1)
except with the rank ID and the color ID swapped.

The divide method provides this functionality, and it returns 2 new
SimpleComm objects for each of the 2 groupings described above. This means
that within each group, the same partition, collecting, and reducing
operations can be performed in the same way as described above for the global
group.

Copyright 2020 University Corporation for Atmospheric Research

Licensed under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an “AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

	
class asaptools.simplecomm.SimpleComm[source]

	Bases: object

Simple Communicator for serial operation.

	
_numpy

	Reference to the Numpy module, if found

	
_color

	The color associated with the communicator, if colored

	
_group

	The group ID associated with the communicator’s color

	
allreduce(data, op)[source]

	Perform an MPI AllReduction operation.

The data is “reduced” across all ranks in the communicator, and the
result is returned to all ranks in the communicator. (Reduce
operations such as ‘sum’, ‘prod’, ‘min’, and ‘max’ are allowed.)

This call must be made by all ranks.

	Parameters

	
	data – The data to be reduced

	op (str) – A string identifier for a reduce operation (any string
found in the OPERATORS list)

	Returns

	The single value constituting the reduction of the input data.
(The same value is returned on all ranks in this communicator.)

	
collect(data=None, tag=0)[source]

	Send data from a ‘worker’ rank to the ‘manager’ rank.

If the calling MPI process is the ‘manager’ rank, then it will
receive and return the data sent from the ‘worker’. If the calling
MPI process is a ‘worker’ rank, then it will send the data to the
‘manager’ rank.

For each call to this function on a given ‘worker’ rank, there must
be a matching call to this function made on the ‘manager’ rank.

NOTE: This method cannot be used for communication between the
‘manager’ rank and itself. Attempting this will cause the code to
hang.

	Keyword Arguments

	
	data – The data to be collected asynchronously on the manager rank.

	tag (int) – A user-defined integer tag to uniquely specify this
communication message

	Returns

	On the ‘manager’ rank, a tuple containing the source rank ID
and the data collected. None on all other ranks.

	Raises

	RuntimeError – If executed during a serial or 1-rank parallel run

	
divide(group)[source]

	Divide this communicator’s ranks into groups.

Creates and returns two (2) kinds of groups:

	
	groups with ranks of the same color ID but different rank IDs
	(called a “monocolor” group), and

	
	groups with ranks of the same rank ID but different color IDs
	(called a “multicolor” group).

	Parameters

	group – A unique group ID to which will be assigned an integer
color ID ranging from 0 to the number of group ID’s
supplied across all ranks

	Returns

	
	A tuple containing (first) the “monocolor” SimpleComm for
	ranks with the same color ID (but different rank IDs) and
(second) the “multicolor” SimpleComm for ranks with the same
rank ID (but different color IDs)

	Return type

	tuple

	Raises

	RuntimeError – If executed during a serial or 1-rank parallel run

	
get_color()[source]

	Get the integer color ID of this MPI process in this communicator.

By default, a communicator’s color is None, but a communicator can
be divided into color groups using the ‘divide’ method.

This call can be made independently from other ranks.

	Returns

	The color of this MPI communicator

	Return type

	int

	
get_group()[source]

	Get the group ID of this MPI communicator.

The group ID is the argument passed to the ‘divide’ method, and it
represents a unique identifier for all ranks in the same color group.
It can be any type of object (e.g., a string name).

This call can be made independently from other ranks.

	Returns

	The group ID of this communicator

	
get_rank()[source]

	Get the integer rank ID of this MPI process in this communicator.

This call can be made independently from other ranks.

	Returns

	The integer rank ID of this MPI process

	Return type

	int

	
get_size()[source]

	Get the integer number of ranks in this communicator.

The size includes the ‘manager’ rank.

	Returns

	The integer number of ranks in this communicator.

	Return type

	int

	
is_manager()[source]

	Check if this MPI process is on the ‘manager’ rank (i.e., rank 0).

This call can be made independently from other ranks.

	Returns

	
	True if this MPI process is on the master rank
	(or rank 0). False otherwise.

	Return type

	bool

	
partition(data=None, func=None, involved=False, tag=0)[source]

	Partition and send data from the ‘manager’ rank to ‘worker’ ranks.

By default, the data is partitioned using an “equal stride” across the
data, with the stride equal to the number of ranks involved in the
partitioning. If a partition function is supplied via the func
argument, then the data will be partitioned across the ‘worker’ ranks,
giving each ‘worker’ rank a different part of the data according to
the algorithm used by partition function supplied.

If the involved argument is True, then a part of the data (as
determined by the given partition function, if supplied) will be
returned on the ‘manager’ rank. Otherwise, (‘involved’ argument is
False) the data will be partitioned only across the ‘worker’ ranks.

This call must be made by all ranks.

	Keyword Arguments

	
	data – The data to be partitioned across the ranks in the
communicator.

	func – A PartitionFunction object/function that returns a part
of the data given the index and assumed size of the partition.

	involved (bool) – True if a part of the data should be given to the
‘manager’ rank in addition to the ‘worker’ ranks. False
otherwise.

	tag (int) – A user-defined integer tag to uniquely specify this
communication message.

	Returns

	A (possibly partitioned) subset (i.e., part) of the data. Depending
on the PartitionFunction used (or if it is used at all), this method
may return a different part on each rank.

	
ration(data=None, tag=0)[source]

	Send a single piece of data from the ‘manager’ rank to a ‘worker’ rank.

If this method is called on a ‘worker’ rank, the worker will send a
“request” for data to the ‘manager’ rank. When the ‘manager’ receives
this request, the ‘manager’ rank sends a single piece of data back to
the requesting ‘worker’ rank.

For each call to this function on a given ‘worker’ rank, there must
be a matching call to this function made on the ‘manager’ rank.

NOTE: This method cannot be used for communication between the
‘manager’ rank and itself. Attempting this will cause the code to
hang.

	Keyword Arguments

	
	data – The data to be asynchronously sent to the ‘worker’ rank

	tag (int) – A user-defined integer tag to uniquely specify this
communication message

	Returns

	On the ‘worker’ rank, the data sent by the manager. On the
‘manager’ rank, None.

	Raises

	RuntimeError – If executed during a serial or 1-rank parallel run

	
sync()[source]

	Synchronize all MPI processes at the point of this call.

Immediately after this method is called, you can guarantee that all
ranks in this communicator will be synchronized.

This call must be made by all ranks.

	
class asaptools.simplecomm.SimpleCommMPI[source]

	Bases: asaptools.simplecomm.SimpleComm

Simple Communicator using MPI.

	
PART_TAG

	Partition Tag Identifier

	
RATN_TAG

	Ration Tag Identifier

	
CLCT_TAG

	Collect Tag Identifier

	
REQ_TAG

	Request Identifier

	
MSG_TAG

	Message Identifer

	
ACK_TAG

	Acknowledgement Identifier

	
PYT_TAG

	Python send/recv Identifier

	
NPY_TAG

	Numpy send/recv Identifier

	
_mpi

	A reference to the mpi4py.MPI module

	
_comm

	A reference to the mpi4py.MPI communicator

	
ACK_TAG = 3

	

	
CLCT_TAG = 3

	

	
MSG_TAG = 2

	

	
NPY_TAG = 5

	

	
PART_TAG = 1

	

	
PYT_TAG = 4

	

	
RATN_TAG = 2

	

	
REQ_TAG = 1

	

	
allreduce(data, op)[source]

	Perform an MPI AllReduction operation.

The data is “reduced” across all ranks in the communicator, and the
result is returned to all ranks in the communicator. (Reduce
operations such as ‘sum’, ‘prod’, ‘min’, and ‘max’ are allowed.)

This call must be made by all ranks.

	Parameters

	
	data – The data to be reduced

	op (str) – A string identifier for a reduce operation (any string
found in the OPERATORS list)

	Returns

	The single value constituting the reduction of the input data.
(The same value is returned on all ranks in this communicator.)

	
collect(data=None, tag=0)[source]

	Send data from a ‘worker’ rank to the ‘manager’ rank.

If the calling MPI process is the ‘manager’ rank, then it will
receive and return the data sent from the ‘worker’. If the calling
MPI process is a ‘worker’ rank, then it will send the data to the
‘manager’ rank.

For each call to this function on a given ‘worker’ rank, there must
be a matching call to this function made on the ‘manager’ rank.

NOTE: This method cannot be used for communication between the
‘manager’ rank and itself. Attempting this will cause the code to
hang.

	Keyword Arguments

	
	data – The data to be collected asynchronously
on the ‘manager’ rank.

	tag (int) – A user-defined integer tag to uniquely
specify this communication message

	Returns

	
	On the ‘manager’ rank, a tuple containing the source rank
	ID and the the data collected. None on all other ranks.

	Return type

	tuple

	Raises

	RuntimeError – If executed during a serial or 1-rank parallel run

	
divide(group)[source]

	Divide this communicator’s ranks into groups.

Creates and returns two (2) kinds of groups:

	groups with ranks of the same color ID but different rank IDs
(called a “monocolor” group), and

	groups with ranks of the same rank ID but different color IDs
(called a “multicolor” group).

	Parameters

	group – A unique group ID to which will be assigned an integer
color ID ranging from 0 to the number of group ID’s
supplied across all ranks

	Returns

	
	A tuple containing (first) the “monocolor” SimpleComm for
	ranks with the same color ID (but different rank IDs) and
(second) the “multicolor” SimpleComm for ranks with the same
rank ID (but different color IDs)

	Return type

	tuple

	Raises

	RuntimeError – If executed during a serial or 1-rank parallel run

	
get_rank()[source]

	Get the integer rank ID of this MPI process in this communicator.

This call can be made independently from other ranks.

	Returns

	The integer rank ID of this MPI process

	Return type

	int

	
get_size()[source]

	Get the integer number of ranks in this communicator.

The size includes the ‘manager’ rank.

	Returns

	The integer number of ranks in this communicator.

	Return type

	int

	
partition(data=None, func=None, involved=False, tag=0)[source]

	Partition and send data from the ‘manager’ rank to ‘worker’ ranks.

By default, the data is partitioned using an “equal stride” across the
data, with the stride equal to the number of ranks involved in the
partitioning. If a partition function is supplied via the ‘func’
argument, then the data will be partitioned across the ‘worker’ ranks,
giving each ‘worker’ rank a different part of the data according to
the algorithm used by partition function supplied.

If the ‘involved’ argument is True, then a part of the data (as
determined by the given partition function, if supplied) will be
returned on the ‘manager’ rank. Otherwise, (‘involved’ argument is
False) the data will be partitioned only across the ‘worker’ ranks.

This call must be made by all ranks.

	Keyword Arguments

	
	data – The data to be partitioned across
the ranks in the communicator.

	func – A PartitionFunction object/function that returns
a part of the data given the index and assumed
size of the partition.

	involved (bool) – True, if a part of the data should be given
to the ‘manager’ rank in addition to the ‘worker’
ranks. False, otherwise.

	tag (int) – A user-defined integer tag to uniquely
specify this communication message

	Returns

	A (possibly partitioned) subset (i.e., part) of the data.
Depending on the PartitionFunction used (or if it is used at all),
this method may return a different part on each rank.

	
ration(data=None, tag=0)[source]

	Send a single piece of data from the ‘manager’ rank to a ‘worker’ rank.

If this method is called on a ‘worker’ rank, the worker will send a
“request” for data to the ‘manager’ rank. When the ‘manager’ receives
this request, the ‘manager’ rank sends a single piece of data back to
the requesting ‘worker’ rank.

For each call to this function on a given ‘worker’ rank, there must
be a matching call to this function made on the ‘manager’ rank.

NOTE: This method cannot be used for communication between the
‘manager’ rank and itself. Attempting this will cause the code to
hang.

	Keyword Arguments

	
	data – The data to be asynchronously sent to the ‘worker’ rank

	tag (int) – A user-defined integer tag to uniquely specify this
communication message

	Returns

	On the ‘worker’ rank, the data sent by the manager. On the
‘manager’ rank, None.

	Raises

	RuntimeError – If executed during a serial or 1-rank parallel run

	
sync()[source]

	Synchronize all MPI processes at the point of this call.

Immediately after this method is called, you can guarantee that all
ranks in this communicator will be synchronized.

This call must be made by all ranks.

	
asaptools.simplecomm.create_comm(serial=False)[source]

	This is a factory function for creating SimpleComm objects.

Depending on the argument given, it returns an instance of a serial or
parallel SimpleComm object.

	Keyword Arguments

	serial (bool) – A boolean flag with True indicating the desire for a
serial SimpleComm instance, and False incidicating the
desire for a parallel SimpleComm instance.

	Returns

	
	An instance of a SimpleComm object, either serial
	(if serial == True) or parallel (if serial == False)

	Return type

	SimpleComm

	Raises

	TypeError – if the serial argument is not a bool.

Examples

>>> sercomm = create_comm(serial=True)
>>> type(sercomm)
<class 'simplecomm.SimpleComm'>

>>> parcomm = create_comm()
>>> type(parcomm)
<class 'simplecomm.SimpleCommMPI'>

Change Log

Copyright 2020 University Corporation for Atmospheric Research

Licensed under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an “AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Version 0.7.0

	Big refactor to use GitHub workflows (adding testing for Python
version 3.7 and 3.8)

	Modernizing the package structure

Version 0.6.0

	Allowing for support of all Python 2.6+ (including Python 3+)

Version 0.5.4

	Bugfix: Special catch for dtype=’c’ (C-type char arrays) in check for
Numpy arrays being bufferable

Version 0.5.3

	Updates just for PyPI release

Version 0.5.2

	Improved testing for send/recv data types

	Backwards compatability with mpi4py version 1.3.1

Version 0.5.1

	Checking dtype of Numpy NDArrays before determing if buffered send/recv
calls can be used.

Version 0.5.0

	Now requires Python >=2.7 and <3.0

	Using more advanced features of Python 2.7 (over 2.6)

	Changed Numpy NDArray type-checking to allow for masked arrays, instead of
just NDArrays

Version 0.4.2

	Update setup script to setuptools (instead of distutils)

Version 0.4.1

	Bugfixes

Version 0.4

	Updating install to include LICENSE

	Restructured source directory

	Upload to PyPI

Version 0.3

	Repackaging the pyTools repo into a Python package with
installation software and Sphinx-style documentation

Product License

Apache License

Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

	Definitions.

“License” shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

“Licensor” shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

“Legal Entity” shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
“control” means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

“You” (or “Your”) shall mean an individual or Legal Entity
exercising permissions granted by this License.

“Source” form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

“Object” form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

“Work” shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).

“Derivative Works” shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

“Contribution” shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, “submitted”
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as “Not a Contribution.”

“Contributor” shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

	Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

	Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

	Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:

	You must give any other recipients of the Work or
Derivative Works a copy of this License; and

	You must cause any modified files to carry prominent notices
stating that You changed the files; and

	You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and

	If the Work includes a “NOTICE” text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

	Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

	Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

	Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an “AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

	Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

	Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets “[]”
replaced with your own identifying information. (Don’t include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same “printed page” as the copyright notice for easier
identification within third-party archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an “AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

 Python Module Index

 a

 		 	

 		
 a	

 	[image: -]
 	
 asaptools	

 	
 	
 asaptools.partition	

 	
 	
 asaptools.simplecomm	

 	
 	
 asaptools.timekeeper	

 	
 	
 asaptools.vprinter	

Index

 _
 | A
 | C
 | D
 | E
 | G
 | H
 | I
 | M
 | N
 | P
 | R
 | S
 | T
 | V
 | W

_

 	
 	_accumulated_times (asaptools.timekeeper.TimeKeeper attribute)

 	_added_order (asaptools.timekeeper.TimeKeeper attribute)

 	_color (asaptools.simplecomm.SimpleComm attribute)

 	_comm (asaptools.simplecomm.SimpleCommMPI attribute)

 	
 	_group (asaptools.simplecomm.SimpleComm attribute)

 	_mpi (asaptools.simplecomm.SimpleCommMPI attribute)

 	_numpy (asaptools.simplecomm.SimpleComm attribute)

 	_start_times (asaptools.timekeeper.TimeKeeper attribute)

 	_time (asaptools.timekeeper.TimeKeeper attribute)

A

 	
 	ACK_TAG (asaptools.simplecomm.SimpleCommMPI attribute), [1]

 	allreduce() (asaptools.simplecomm.SimpleComm method)

 	(asaptools.simplecomm.SimpleCommMPI method)

 	
 asaptools

 	module

 	
 asaptools.partition

 	module

 	
 	
 asaptools.simplecomm

 	module

 	
 asaptools.timekeeper

 	module

 	
 asaptools.vprinter

 	module

C

 	
 	CLCT_TAG (asaptools.simplecomm.SimpleCommMPI attribute), [1]

 	collect() (asaptools.simplecomm.SimpleComm method)

 	(asaptools.simplecomm.SimpleCommMPI method)

 	
 	create_comm() (in module asaptools.simplecomm)

D

 	
 	divide() (asaptools.simplecomm.SimpleComm method)

 	(asaptools.simplecomm.SimpleCommMPI method)

 	
 	Duplicate (class in asaptools.partition)

E

 	
 	EqualLength (class in asaptools.partition)

 	
 	EqualStride (class in asaptools.partition)

G

 	
 	get_all_times() (asaptools.timekeeper.TimeKeeper method)

 	get_color() (asaptools.simplecomm.SimpleComm method)

 	get_group() (asaptools.simplecomm.SimpleComm method)

 	get_names() (asaptools.timekeeper.TimeKeeper method)

 	
 	get_rank() (asaptools.simplecomm.SimpleComm method)

 	(asaptools.simplecomm.SimpleCommMPI method)

 	get_size() (asaptools.simplecomm.SimpleComm method)

 	(asaptools.simplecomm.SimpleCommMPI method)

 	get_time() (asaptools.timekeeper.TimeKeeper method)

H

 	
 	header (asaptools.vprinter.VPrinter attribute)

I

 	
 	is_manager() (asaptools.simplecomm.SimpleComm method)

M

 	
 	
 module

 	asaptools

 	asaptools.partition

 	asaptools.simplecomm

 	asaptools.timekeeper

 	asaptools.vprinter

 	
 	MSG_TAG (asaptools.simplecomm.SimpleCommMPI attribute), [1]

N

 	
 	NPY_TAG (asaptools.simplecomm.SimpleCommMPI attribute), [1]

P

 	
 	PART_TAG (asaptools.simplecomm.SimpleCommMPI attribute), [1]

 	partition() (asaptools.simplecomm.SimpleComm method)

 	(asaptools.simplecomm.SimpleCommMPI method)

 	
 	PartitionFunction (class in asaptools.partition)

 	PYT_TAG (asaptools.simplecomm.SimpleCommMPI attribute), [1]

R

 	
 	ration() (asaptools.simplecomm.SimpleComm method)

 	(asaptools.simplecomm.SimpleCommMPI method)

 	
 	RATN_TAG (asaptools.simplecomm.SimpleCommMPI attribute), [1]

 	REQ_TAG (asaptools.simplecomm.SimpleCommMPI attribute), [1]

 	reset() (asaptools.timekeeper.TimeKeeper method)

S

 	
 	SimpleComm (class in asaptools.simplecomm)

 	SimpleCommMPI (class in asaptools.simplecomm)

 	SortedStride (class in asaptools.partition)

 	
 	start() (asaptools.timekeeper.TimeKeeper method)

 	stop() (asaptools.timekeeper.TimeKeeper method)

 	sync() (asaptools.simplecomm.SimpleComm method)

 	(asaptools.simplecomm.SimpleCommMPI method)

T

 	
 	TimeKeeper (class in asaptools.timekeeper)

 	
 	to_str() (asaptools.vprinter.VPrinter method)

V

 	
 	verbosity (asaptools.vprinter.VPrinter attribute)

 	
 	VPrinter (class in asaptools.vprinter)

W

 	
 	WeightBalanced (class in asaptools.partition)

 All modules for which code is available

	asaptools.partition

	asaptools.simplecomm

	asaptools.timekeeper

	asaptools.vprinter

 Source code for asaptools.partition

"""
A module for data partitioning functions.

This provides a collection of 'partitioning' functions. A partitioning
function is a three-argument function that takes, as the first argument, a
given data object and, as the second argument, an index into that object and,
as the third argument, a maximum index. The operation of the partitioning
function is to return a subset of the data corresponding to the given index.

By design, partitioning functions should keep the data "unchanged" except for
subselecting parts of the data.

Copyright 2020 University Corporation for Atmospheric Research

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""

from abc import ABCMeta, abstractmethod
from operator import itemgetter

[docs]class PartitionFunction(object):

 """
 The abstract base-class for all Partitioning Function objects.

 A PartitionFunction object is one with a __call__ method that takes
 three arguments. The first argument is the data to be partitioned, the
 second argument is the index of the partition (or part) requested, and
 third argument is the number of partitions to assume when dividing
 the data.
 """

 __metaclass__ = ABCMeta

 @staticmethod
 def _check_types(data, index, size):
 """
 Check the types of the index and size arguments.

 Parameters:
 data: The data to be partitioned
 index (int): The index of the partition to return
 size (int): The number of partitions to make

 Raises:
 TypeError: The size or index arguments are not int
 IndexError: The size argument is less than 1, or the index
 argument is less than 0 or greater than or equal to size
 """

 # Check the type of the index
 if type(index) is not int:
 raise TypeError('Partition index must be an integer')

 # Check the value of index
 if index > size - 1 or index < 0:
 raise IndexError('Partition index out of bounds')

 # Check the type of the size
 if type(size) is not int:
 raise TypeError('Partition size must be an integer')

 # Check the value of size
 if size < 1:
 raise IndexError('Partition size less than 1 is invalid')

 @staticmethod
 def _is_indexable(data):
 """
 Check if the data object is indexable.

 Parameters:
 data: The data to be partitioned

 Returns:
 bool: True, if data is an indexable object. False, otherwise.
 """
 if hasattr(data, '__len__') and hasattr(data, '__getitem__'):
 return True
 else:
 return False

 @staticmethod
 def _are_pairs(data):
 """
 Check if the data object is an indexable list of pairs.

 Parameters:
 data: The data to be partitioned

 Returns:
 bool: True, if data is an indexable list of pairs.
 False, otherwise.
 """
 if PartitionFunction._is_indexable(data):
 return all(map(lambda i: PartitionFunction._is_indexable(i) and len(i) == 2, data))
 else:
 return False

 @abstractmethod
 def __call__(self):
 """
 Implements the partition algorithm.
 """
 return

[docs]class Duplicate(PartitionFunction):

 """
 Return a copy of the original input data in each partition.
 """

 def __call__(self, data, index=0, size=1):
 """
 Define the common interface for all partitioning functions.

 The abstract base class implements the check on the input for correct
 format and typing.

 Parameters:
 data: The data to be partitioned

 Keyword Arguments:
 index (int): A partition index into a part of the data
 size (int): The largest number of partitions allowed

 Returns:
 The indexed part of the data, assuming the data is divided into
 size parts.
 """
 self._check_types(data, index, size)

 return data

[docs]class EqualLength(PartitionFunction):

 """
 Partition an indexable object by striding through the data.

 The initial object is "chopped" along its length into roughly equal length
 sublists. If the partition size is greater than the length of the input
 data, then it will return an empty list for 'empty' partitions. If the
 data is not indexable, then it will return the data for index=0 only, and
 an empty list otherwise.
 """

 def __call__(self, data, index=0, size=1):
 """
 Define the common interface for all partitioning functions.

 The abstract base class implements the check on the input for correct
 format and typing.

 Parameters:
 data: The data to be partitioned

 Keyword Arguments:
 index (int): A partition index into a part of the data
 size (int): The largest number of partitions allowed

 Returns:
 The indexed part of the data, assuming the data is divided into
 size parts.
 """
 self._check_types(data, index, size)

 if self._is_indexable(data):
 (lenpart, remdata) = divmod(len(data), size)
 psizes = [lenpart] * size
 for i in range(remdata):
 psizes[i] += 1
 ibeg = 0
 for i in range(index):
 ibeg += psizes[i]
 iend = ibeg + psizes[index]
 return data[ibeg:iend]
 else:
 if index == 0:
 return [data]
 else:
 return []

[docs]class EqualStride(PartitionFunction):

 """
 Partition an object by chopping the data into roughly equal lengths.

 This returns a sublist of an indexable object by "striding" through the
 data in steps equal to the partition size. If the partition size is
 greater than the length of the input data, then it will return an empty
 list for "empty" partitions. If the data is not indexable, then it will
 return the data for index=0 only, and an empty list otherwise.
 """

 def __call__(self, data, index=0, size=1):
 """
 Define the common interface for all partitioning functions.

 The abstract base class implements the check on the input for correct
 format and typing.

 Parameters:
 data: The data to be partitioned

 Keyword Arguments:
 index (int): A partition index into a part of the data
 size (int): The largest number of partitions allowed

 Returns:
 The indexed part of the data, assuming the data is divided into
 size parts.
 """
 self._check_types(data, index, size)

 if self._is_indexable(data):
 if index < len(data):
 return data[index::size]
 else:
 return []
 else:
 if index == 0:
 return [data]
 else:
 return []

[docs]class SortedStride(PartitionFunction):

 """
 Partition an indexable list of pairs by striding through sorted data.

 The first index of each pair is assumed to be an item of data (which will
 be partitioned), and the second index in each pair is assumed to be a
 numeric weight. The pairs are first sorted by weight, and then partitions
 are returned by striding through the sorted data.

 The results are partitions of roughly equal length and roughly equal
 total weight. However, equal length is prioritized over total weight.
 """

 def __call__(self, data, index=0, size=1):
 """
 Define the common interface for all partitioning functions.

 The abstract base class implements the check on the input for correct
 format and typing.

 Parameters:
 data: The data to be partitioned

 Keyword Arguments:
 index (int): A partition index into a part of the data
 size (int): The largest number of partitions allowed

 Returns:
 The indexed part of the data, assuming the data is divided into
 size parts.
 """
 self._check_types(data, index, size)

 if self._are_pairs(data):
 subdata = [q[0] for q in sorted(data, key=itemgetter(1))]
 return EqualStride()(subdata, index=index, size=size)
 else:
 return EqualStride()(data, index=index, size=size)

[docs]class WeightBalanced(PartitionFunction):

 """
 Partition an indexable list of pairs by balancing the total weight.

 The first index of each pair is assumed to be an item of data (which will
 be partitioned), and the second index in each pair is assumed to be a
 numeric weight. The data items are grouped via a "greedy" binning
 algorithm into partitions of roughly equal total weight.

 The results are partitions of roughly equal length and roughly equal
 total weight. However, equal total weight is prioritized over length.

 """

 def __call__(self, data, index=0, size=1):
 """
 Define the common interface for all partitioning functions.

 The abstract base class implements the check on the input for correct
 format and typing.

 Parameters:
 data: The data to be partitioned

 Keyword Arguments:
 index (int): A partition index into a part of the data
 size (int): The largest number of partitions allowed

 Returns:
 The indexed part of the data, assuming the data is divided into
 size parts.
 """
 self._check_types(data, index, size)

 if self._are_pairs(data):
 sorted_pairs = sorted(data, key=itemgetter(1), reverse=True)
 partition = []
 weights = [0] * size
 for (item, weight) in sorted_pairs:
 k = min(enumerate(weights), key=itemgetter(1))[0]
 if k == index:
 partition.append(item)
 weights[k] += weight
 return partition
 else:
 return EqualStride()(data, index=index, size=size)

 Source code for asaptools.simplecomm

"""
A module for simple MPI communication.

The SimpleComm class is designed to provide a simplified MPI-based
communication strategy using the MPI4Py module.

To accomplish this task, the SimpleComm object provides a single communication
pattern with a simple, light-weight API. The communication pattern is a
common 'manager'/'worker' pattern, with the 0th rank assumed to be the
'manager' rank. The SimpleComm API provides a way of sending data out from the
'manager' rank to the 'worker' ranks, and for collecting the data from the
'worker' ranks back on the 'manager' rank.

PARTITIONING:

Within the SimpleComm paradigm, the 'manager' rank is assumed to be responsible
for partition (or distributing) the necessary work to the 'worker' ranks.
The *partition* mathod provides this functionality. Using a *partition
function*, the *partition* method takes data known on the 'manager' rank and
gives each 'worker' rank a part of the data according to the algorithm of the
partition function.

The *partition* method is *synchronous*, meaning that every rank (from the
'manager' rank to all of the 'worker' ranks) must be in synch when the method
is called. This means that every rank must participate in the call, and
every rank will wait until all of the data has been partitioned before
continuing. Remember, whenever the 'manager' rank speaks, all of the
'worker' ranks listen! And they continue to listen until dismissed by the
'manager' rank.

Additionally, the 'manager' rank can be considered *involved* or *uninvolved*
in the partition process. If the 'manager' rank is *involved*, then the
master will take a part of the data for itself. If the 'manager' is
uninvolved, then the data will be partitioned only across the 'worker' ranks.

Partitioning is a *synchronous* communication call that implements a
static partitioning algorithm.

RATIONING:

An alternative approach to the *partitioning* communication method is the
rationing communication method. This method involves the individual
'worker' ranks requesting data to work on. In this approach, each 'worker'
rank, when the 'worker' rank is ready, asks the 'manager' rank for a new
piece of data on which to work. The 'manager' rank receives the request
and gives the next piece of data for processing out to the requesting
'worker' rank. It doesn't matter what order the ranks request data, and
they do not all have to request data at the same time. However, it is
critical to understand that if a 'worker' requests data when the 'manager'
rank does not listen for the request, or the 'manager' expects a 'worker'
to request work but the 'worker' never makes the request, the entire
process will hang and wait forever!

Rationing is an *asynchronous* communication call that allows the 'manager'
to implement a *dynamic partitioning* algorithm.

COLLECTING:

Once each 'worker' has received its assigned part of the data, the 'worker'
will perform some work pertaining to the data it received. In such a case,
the 'worker' may (though not necessarily) return one or more results back to
the 'manager'. The *collect* method provides this functionality.

The *collect* method is *asynchronous*, meaning that each slave can send
its data back to the master at any time and in any order. Since the 'manager'
rank does not care where the data came from, the 'manager' rank simply receives
the result from the 'worker' rank and processes it. Hence, all that matters
is that for every *collect* call made by all of the 'worker' ranks, a *collect*
call must also be made by the 'manager' rank.

The *collect* method is a *handshake* method, meaning that while the 'manager'
rank doesn't care which 'worker' rank sends it data, the 'manager' rank does
acknowledge the 'worker' rank and record the 'worker' rank's identity.

REDUCING:

In general, it is assumed that each 'worker' rank works independently from the
other 'worker' ranks. However, it may be occasionally necessary for the
'worker' ranks to know something about the work being done on (or the data
given to) each of the other ranks. The only allowed communication of this
type is provided by the *allreduce* method.

The *allreduce* method allows for *reductions* of the data distributed across
all of the ranks to be made available to every rank. Reductions are operations
such as 'max', 'min', 'sum', and 'prod', which compute and distribute to the
ranks the 'maximum', 'minimum', 'sum', or 'product' of the data distributed
across the ranks. Since the *reduction* computes a reduced quantity of data
distributed across all ranks, the *allreduce* method is a *synchronous* method
(i.e., all ranks must participate in the call, including the 'manager').

DIVIDING:

It can be occasionally useful to subdivide the 'worker' ranks into different
groups to perform different tasks in each group. When this is necessary, the
'manager' rank will assign itself and each 'worker' rank a *color* ID. Then,
the 'manager' will assign each rank (including itself) to 2 new groups:

1. Each rank with the same color ID will be assigned to the same group, and
 within this new *color* group, each rank will be given a new rank ID
 ranging from 0 (identifying the color group's 'manager' rank) to the number
 of 'worker' ranks in the color group. This is called
 the *monocolor* grouping.

2. Each rank with the same new rank ID across all color groups will be assigned
 to the same group. Hence, all ranks with rank ID 0 (but different color
 IDs) will be in the same group, all ranks with rank ID 1 (but different
 color IDs) will be the in another group, etc. This is called the
 multicolor grouping. NOTE: This grouping will look like grouping (1)
 except with the rank ID and the color ID swapped.

The *divide* method provides this functionality, and it returns 2 new
SimpleComm objects for each of the 2 groupings described above. This means
that within each group, the same *partition*, *collecting*, and *reducing*
operations can be performed in the same way as described above for the *global*
group.

Copyright 2020 University Corporation for Atmospheric Research

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""

from collections import defaultdict
from functools import partial # noqa: UnusedImport

Define the supported reduction operators
OPERATORS = ['sum', 'prod', 'max', 'min']

Define the reduction operators map (Maps names to function names.
The 'py' function names are passed to 'eval(*)' and executed as python code.
The 'np' function names are passed to 'getattr(numpy,*)' and executed as
numpy code. The 'mpi' function names are passed to 'getattr(mpi4py,*)'
and return an MPI operator object which is passed as an argument to MPI
reduce functions.
_OP_MAP = {
 'sum': {'py': 'sum', 'np': 'sum', 'mpi': 'SUM'},
 'prod': {'py': 'partial(reduce, lambda x, y: x * y)', 'np': 'prod', 'mpi': 'PROD'},
 'max': {'py': 'max', 'np': 'max', 'mpi': 'MAX'},
 'min': {'py': 'min', 'np': 'min', 'mpi': 'MIN'},
}

[docs]def create_comm(serial=False):
 """
 This is a factory function for creating SimpleComm objects.

 Depending on the argument given, it returns an instance of a serial or
 parallel SimpleComm object.

 Keyword Arguments:
 serial (bool): A boolean flag with True indicating the desire for a
 serial SimpleComm instance, and False incidicating the
 desire for a parallel SimpleComm instance.

 Returns:
 SimpleComm: An instance of a SimpleComm object, either serial
 (if serial == True) or parallel (if serial == False)

 Raises:
 TypeError: if the serial argument is not a bool.

 Examples:

 >>> sercomm = create_comm(serial=True)
 >>> type(sercomm)
 <class 'simplecomm.SimpleComm'>

 >>> parcomm = create_comm()
 >>> type(parcomm)
 <class 'simplecomm.SimpleCommMPI'>
 """
 if type(serial) is not bool:
 raise TypeError('Serial parameter must be a bool')
 if serial:
 return SimpleComm()
 else:
 return SimpleCommMPI()

[docs]class SimpleComm(object):

 """
 Simple Communicator for serial operation.

 Attributes:
 _numpy: Reference to the Numpy module, if found
 _color: The color associated with the communicator, if colored
 _group: The group ID associated with the communicator's color
 """

 def __init__(self):
 """
 Constructor.
 """

 # Try importing the Numpy module
 try:
 import numpy
 except:
 numpy = None

 # To the Numpy module, if found
 self._numpy = numpy

 # The color ID associated with this communicator
 self._color = None

 # The group ID associated with the color
 self._group = None

 def _is_ndarray(self, obj):
 """
 Helper function to determing if an object is a Numpy NDArray.

 Parameters:
 obj: The object to be tested

 Returns:
 bool: True if the object is a Numpy NDArray. False otherwise,
 or if the Numpy module was not found during
 the SimpleComm constructor.

 Examples:

 >>> _is_ndarray(1)
 False

 >>> alist = [1, 2, 3, 4]
 >>> _is_ndarray(alist)
 False

 >>> aarray = numpy.array(alist)
 >>> _is_ndarray(aarray)
 True
 """
 if self._numpy:
 return isinstance(obj, self._numpy.ndarray)
 else:
 return False

[docs] def get_size(self):
 """
 Get the integer number of ranks in this communicator.

 The size includes the 'manager' rank.

 Returns:
 int: The integer number of ranks in this communicator.
 """
 return 1

[docs] def get_rank(self):
 """
 Get the integer rank ID of this MPI process in this communicator.

 This call can be made independently from other ranks.

 Returns:
 int: The integer rank ID of this MPI process
 """
 return 0

[docs] def is_manager(self):
 """
 Check if this MPI process is on the 'manager' rank (i.e., rank 0).

 This call can be made independently from other ranks.

 Returns:
 bool: True if this MPI process is on the master rank
 (or rank 0). False otherwise.
 """
 return self.get_rank() == 0

[docs] def get_color(self):
 """
 Get the integer color ID of this MPI process in this communicator.

 By default, a communicator's color is None, but a communicator can
 be divided into color groups using the 'divide' method.

 This call can be made independently from other ranks.

 Returns:
 int: The color of this MPI communicator
 """
 return self._color

[docs] def get_group(self):
 """
 Get the group ID of this MPI communicator.

 The group ID is the argument passed to the 'divide' method, and it
 represents a unique identifier for all ranks in the same color group.
 It can be any type of object (e.g., a string name).

 This call can be made independently from other ranks.

 Returns:
 The group ID of this communicator
 """
 return self._group

[docs] def sync(self):
 """
 Synchronize all MPI processes at the point of this call.

 Immediately after this method is called, you can guarantee that all
 ranks in this communicator will be synchronized.

 This call must be made by all ranks.
 """
 return

[docs] def allreduce(self, data, op):
 """
 Perform an MPI AllReduction operation.

 The data is "reduced" across all ranks in the communicator, and the
 result is returned to all ranks in the communicator. (Reduce
 operations such as 'sum', 'prod', 'min', and 'max' are allowed.)

 This call must be made by all ranks.

 Parameters:
 data: The data to be reduced
 op (str): A string identifier for a reduce operation (any string
 found in the OPERATORS list)

 Returns:
 The single value constituting the reduction of the input data.
 (The same value is returned on all ranks in this communicator.)
 """
 if isinstance(data, dict):
 totals = {}
 for k, v in data.items():
 totals[k] = SimpleComm.allreduce(self, v, op)
 return totals
 elif self._is_ndarray(data):
 return SimpleComm.allreduce(self, getattr(self._numpy, _OP_MAP[op]['np'])(data), op)
 elif hasattr(data, '__len__'):
 return SimpleComm.allreduce(self, eval(_OP_MAP[op]['py'])(data), op)
 else:
 return data

[docs] def partition(self, data=None, func=None, involved=False, tag=0):
 """
 Partition and send data from the 'manager' rank to 'worker' ranks.

 By default, the data is partitioned using an "equal stride" across the
 data, with the stride equal to the number of ranks involved in the
 partitioning. If a partition function is supplied via the `func`
 argument, then the data will be partitioned across the 'worker' ranks,
 giving each 'worker' rank a different part of the data according to
 the algorithm used by partition function supplied.

 If the `involved` argument is True, then a part of the data (as
 determined by the given partition function, if supplied) will be
 returned on the 'manager' rank. Otherwise, ('involved' argument is
 False) the data will be partitioned only across the 'worker' ranks.

 This call must be made by all ranks.

 Keyword Arguments:
 data: The data to be partitioned across the ranks in the
 communicator.
 func: A PartitionFunction object/function that returns a part
 of the data given the index and assumed size of the partition.
 involved (bool): True if a part of the data should be given to the
 'manager' rank in addition to the 'worker' ranks. False
 otherwise.
 tag (int): A user-defined integer tag to uniquely specify this
 communication message.

 Returns:
 A (possibly partitioned) subset (i.e., part) of the data. Depending
 on the PartitionFunction used (or if it is used at all), this method
 may return a different part on each rank.
 """
 op = func if func else lambda *x: x[0][x[1] :: x[2]]
 if involved:
 return op(data, 0, 1)
 else:
 return None

[docs] def ration(self, data=None, tag=0):
 """
 Send a single piece of data from the 'manager' rank to a 'worker' rank.

 If this method is called on a 'worker' rank, the worker will send a
 "request" for data to the 'manager' rank. When the 'manager' receives
 this request, the 'manager' rank sends a single piece of data back to
 the requesting 'worker' rank.

 For each call to this function on a given 'worker' rank, there must
 be a matching call to this function made on the 'manager' rank.

 NOTE: This method cannot be used for communication between the
 'manager' rank and itself. Attempting this will cause the code to
 hang.

 Keyword Arguments:
 data: The data to be asynchronously sent to the 'worker' rank
 tag (int): A user-defined integer tag to uniquely specify this
 communication message

 Returns:
 On the 'worker' rank, the data sent by the manager. On the
 'manager' rank, None.

 Raises:
 RuntimeError: If executed during a serial or 1-rank parallel run
 """
 err_msg = 'Rationing cannot be used in serial operation'
 raise RuntimeError(err_msg)

[docs] def collect(self, data=None, tag=0):
 """
 Send data from a 'worker' rank to the 'manager' rank.

 If the calling MPI process is the 'manager' rank, then it will
 receive and return the data sent from the 'worker'. If the calling
 MPI process is a 'worker' rank, then it will send the data to the
 'manager' rank.

 For each call to this function on a given 'worker' rank, there must
 be a matching call to this function made on the 'manager' rank.

 NOTE: This method cannot be used for communication between the
 'manager' rank and itself. Attempting this will cause the code to
 hang.

 Keyword Arguments:
 data: The data to be collected asynchronously on the manager rank.
 tag (int): A user-defined integer tag to uniquely specify this
 communication message

 Returns:
 On the 'manager' rank, a tuple containing the source rank ID
 and the data collected. None on all other ranks.

 Raises:
 RuntimeError: If executed during a serial or 1-rank parallel run
 """
 err_msg = 'Collection cannot be used in serial operation'
 raise RuntimeError(err_msg)

[docs] def divide(self, group):
 """
 Divide this communicator's ranks into groups.

 Creates and returns two (2) kinds of groups:

 1. groups with ranks of the same color ID but different rank IDs
 (called a "monocolor" group), and

 2. groups with ranks of the same rank ID but different color IDs
 (called a "multicolor" group).

 Parameters:
 group: A unique group ID to which will be assigned an integer
 color ID ranging from 0 to the number of group ID's
 supplied across all ranks

 Returns:
 tuple: A tuple containing (first) the "monocolor" SimpleComm for
 ranks with the same color ID (but different rank IDs) and
 (second) the "multicolor" SimpleComm for ranks with the same
 rank ID (but different color IDs)

 Raises:
 RuntimeError: If executed during a serial or 1-rank parallel run
 """
 err_msg = 'Division cannot be done on a serial communicator'
 raise RuntimeError(err_msg)

[docs]class SimpleCommMPI(SimpleComm):

 """
 Simple Communicator using MPI.

 Attributes:
 PART_TAG: Partition Tag Identifier
 RATN_TAG: Ration Tag Identifier
 CLCT_TAG: Collect Tag Identifier
 REQ_TAG: Request Identifier
 MSG_TAG: Message Identifer
 ACK_TAG: Acknowledgement Identifier
 PYT_TAG: Python send/recv Identifier
 NPY_TAG: Numpy send/recv Identifier
 _mpi: A reference to the mpi4py.MPI module
 _comm: A reference to the mpi4py.MPI communicator
 """

 PART_TAG = 1 # Partition Tag Identifier
 RATN_TAG = 2 # Ration Tag Identifier
 CLCT_TAG = 3 # Collect Tag Identifier

 REQ_TAG = 1 # Request Identifier
 MSG_TAG = 2 # Message Identifier
 ACK_TAG = 3 # Acknowledgement Identifier
 PYT_TAG = 4 # Python Data send/recv Identifier
 NPY_TAG = 5 # Numpy NDArray send/recv Identifier

 def __init__(self):
 """
 Constructor.
 """

 # Call the base class constructor
 super(SimpleCommMPI, self).__init__()

 # Try importing the MPI4Py MPI module
 try:
 from mpi4py import MPI
 except:
 err_msg = 'MPI could not be found.'
 raise ImportError(err_msg)

 # Hold on to the MPI module
 self._mpi = MPI

 # The MPI communicator (by default, COMM_WORLD)
 self._comm = self._mpi.COMM_WORLD

 def __del__(self):
 """
 Destructor.

 Free the communicator if this SimpleComm goes out of scope
 """
 if self._comm != self._mpi.COMM_WORLD:
 self._comm.Free()

 def _is_bufferable(self, obj):
 """
 Check if the data is bufferable or not
 """
 if self._is_ndarray(obj):
 if hasattr(self._mpi, '_typedict_c'):
 return obj.dtype.char in self._mpi._typedict_c
 elif hasattr(self._mpi, '__CTypeDict__'):
 return obj.dtype.char in self._mpi.__CTypeDict__ and obj.dtype.char != 'c'
 else:
 return False
 else:
 return False

[docs] def get_size(self):
 """
 Get the integer number of ranks in this communicator.

 The size includes the 'manager' rank.

 Returns:
 int: The integer number of ranks in this communicator.
 """
 return self._comm.Get_size()

[docs] def get_rank(self):
 """
 Get the integer rank ID of this MPI process in this communicator.

 This call can be made independently from other ranks.

 Returns:
 int: The integer rank ID of this MPI process
 """
 return self._comm.Get_rank()

[docs] def sync(self):
 """
 Synchronize all MPI processes at the point of this call.

 Immediately after this method is called, you can guarantee that all
 ranks in this communicator will be synchronized.

 This call must be made by all ranks.
 """
 self._comm.Barrier()

[docs] def allreduce(self, data, op):
 """
 Perform an MPI AllReduction operation.

 The data is "reduced" across all ranks in the communicator, and the
 result is returned to all ranks in the communicator. (Reduce
 operations such as 'sum', 'prod', 'min', and 'max' are allowed.)

 This call must be made by all ranks.

 Parameters:
 data: The data to be reduced
 op (str): A string identifier for a reduce operation (any string
 found in the OPERATORS list)

 Returns:
 The single value constituting the reduction of the input data.
 (The same value is returned on all ranks in this communicator.)
 """
 if isinstance(data, dict):
 all_list = self._comm.gather(SimpleComm.allreduce(self, data, op))
 if self.is_manager():
 all_dict = defaultdict(list)
 for d in all_list:
 for k, v in d.items():
 all_dict[k].append(v)
 result = {}
 for k, v in all_dict.items():
 result[k] = SimpleComm.allreduce(self, v, op)
 return self._comm.bcast(result)
 else:
 return self._comm.bcast(None)
 else:
 return self._comm.allreduce(
 SimpleComm.allreduce(self, data, op),
 op=getattr(self._mpi, _OP_MAP[op]['mpi']),
)

 def _tag_offset(self, method, message, user):
 """
 Method to generate the tag for a given MPI message

 Parameters:
 method (int): One of PART_TAG, RATN_TAG, CLCT_TAG
 message (int): One of REQ_TAG, MSG_TAG, ACK_TAG, PYT_TAG, NPY_TAG
 user (int): A user-defined integer tag

 Returns:
 int: A new tag uniquely combining all of the method, message, and
 user tags together
 """
 return 100 * user + 10 * method + message

[docs] def partition(self, data=None, func=None, involved=False, tag=0):
 """
 Partition and send data from the 'manager' rank to 'worker' ranks.

 By default, the data is partitioned using an "equal stride" across the
 data, with the stride equal to the number of ranks involved in the
 partitioning. If a partition function is supplied via the 'func'
 argument, then the data will be partitioned across the 'worker' ranks,
 giving each 'worker' rank a different part of the data according to
 the algorithm used by partition function supplied.

 If the 'involved' argument is True, then a part of the data (as
 determined by the given partition function, if supplied) will be
 returned on the 'manager' rank. Otherwise, ('involved' argument is
 False) the data will be partitioned only across the 'worker' ranks.

 This call must be made by all ranks.

 Keyword Arguments:
 data: The data to be partitioned across
 the ranks in the communicator.
 func: A PartitionFunction object/function that returns
 a part of the data given the index and assumed
 size of the partition.
 involved (bool): True, if a part of the data should be given
 to the 'manager' rank in addition to the 'worker'
 ranks. False, otherwise.
 tag (int): A user-defined integer tag to uniquely
 specify this communication message

 Returns:
 A (possibly partitioned) subset (i.e., part) of the data.
 Depending on the PartitionFunction used (or if it is used at all),
 this method may return a different part on each rank.
 """
 if self.is_manager():
 op = func if func else lambda *x: x[0][x[1] :: x[2]]
 j = 1 if not involved else 0
 for i in range(1, self.get_size()):

 # Get the part of the data to send to rank i
 part = op(data, i - j, self.get_size() - j)

 # Create the handshake message
 msg = {}
 msg['rank'] = self.get_rank()
 msg['buffer'] = self._is_bufferable(part)
 msg['shape'] = getattr(part, 'shape', None)
 msg['dtype'] = getattr(part, 'dtype', None)

 # Send the handshake message to the worker rank
 msg_tag = self._tag_offset(self.PART_TAG, self.MSG_TAG, tag)
 self._comm.send(msg, dest=i, tag=msg_tag)

 # Receive the acknowledgement from the worker
 ack_tag = self._tag_offset(self.PART_TAG, self.ACK_TAG, tag)
 ack = self._comm.recv(source=i, tag=ack_tag)

 # Check the acknowledgement, if bad skip this rank
 if not ack:
 continue

 # If OK, send the data to the worker
 if msg['buffer']:
 npy_tag = self._tag_offset(self.PART_TAG, self.NPY_TAG, tag)
 self._comm.Send(self._numpy.array(part), dest=i, tag=npy_tag)
 else:
 pyt_tag = self._tag_offset(self.PART_TAG, self.PYT_TAG, tag)
 self._comm.send(part, dest=i, tag=pyt_tag)

 if involved:
 return op(data, 0, self.get_size())
 else:
 return None
 else:

 # Get the data message from the manager
 msg_tag = self._tag_offset(self.PART_TAG, self.MSG_TAG, tag)
 msg = self._comm.recv(source=0, tag=msg_tag)

 # Check the message content
 ack = type(msg) is dict and all(
 [key in msg for key in ['rank', 'buffer', 'shape', 'dtype']]
)

 # If the message is good, acknowledge
 ack_tag = self._tag_offset(self.PART_TAG, self.ACK_TAG, tag)
 self._comm.send(ack, dest=0, tag=ack_tag)

 # if acknowledgement is bad, skip
 if not ack:
 return None

 # Receive the data
 if msg['buffer']:
 npy_tag = self._tag_offset(self.PART_TAG, self.NPY_TAG, tag)
 recvd = self._numpy.empty(msg['shape'], dtype=msg['dtype'])
 self._comm.Recv(recvd, source=0, tag=npy_tag)
 else:
 pyt_tag = self._tag_offset(self.PART_TAG, self.PYT_TAG, tag)
 recvd = self._comm.recv(source=0, tag=pyt_tag)

 return recvd

[docs] def ration(self, data=None, tag=0):
 """
 Send a single piece of data from the 'manager' rank to a 'worker' rank.

 If this method is called on a 'worker' rank, the worker will send a
 "request" for data to the 'manager' rank. When the 'manager' receives
 this request, the 'manager' rank sends a single piece of data back to
 the requesting 'worker' rank.

 For each call to this function on a given 'worker' rank, there must
 be a matching call to this function made on the 'manager' rank.

 NOTE: This method cannot be used for communication between the
 'manager' rank and itself. Attempting this will cause the code to
 hang.

 Keyword Arguments:
 data: The data to be asynchronously sent to the 'worker' rank
 tag (int): A user-defined integer tag to uniquely specify this
 communication message

 Returns:
 On the 'worker' rank, the data sent by the manager. On the
 'manager' rank, None.

 Raises:
 RuntimeError: If executed during a serial or 1-rank parallel run
 """
 if self.get_size() > 1:
 if self.is_manager():

 # Listen for a requesting worker rank
 req_tag = self._tag_offset(self.RATN_TAG, self.REQ_TAG, tag)
 rank = self._comm.recv(source=self._mpi.ANY_SOURCE, tag=req_tag)

 # Create the handshake message
 msg = {}
 msg['buffer'] = self._is_bufferable(data)
 msg['shape'] = data.shape if hasattr(data, 'shape') else None
 msg['dtype'] = data.dtype if hasattr(data, 'dtype') else None

 # Send the handshake message to the requesting worker
 msg_tag = self._tag_offset(self.RATN_TAG, self.MSG_TAG, tag)
 self._comm.send(msg, dest=rank, tag=msg_tag)

 # Receive the acknowledgement from the requesting worker
 ack_tag = self._tag_offset(self.RATN_TAG, self.ACK_TAG, tag)
 ack = self._comm.recv(source=rank, tag=ack_tag)

 # Check the acknowledgement, if not OK skip
 if not ack:
 return

 # If OK, send the data to the requesting worker
 if msg['buffer']:
 npy_tag = self._tag_offset(self.RATN_TAG, self.NPY_TAG, tag)
 self._comm.Send(data, dest=rank, tag=npy_tag)
 else:
 pyt_tag = self._tag_offset(self.RATN_TAG, self.PYT_TAG, tag)
 self._comm.send(data, dest=rank, tag=pyt_tag)
 else:

 # Send a request for data to the manager
 req_tag = self._tag_offset(self.RATN_TAG, self.REQ_TAG, tag)
 self._comm.send(self.get_rank(), dest=0, tag=req_tag)

 # Receive the handshake message from the manager
 msg_tag = self._tag_offset(self.RATN_TAG, self.MSG_TAG, tag)
 msg = self._comm.recv(source=0, tag=msg_tag)

 # Check the message content
 ack = type(msg) is dict and all(
 [key in msg for key in ['buffer', 'shape', 'dtype']]
)

 # Send acknowledgement back to the manager
 ack_tag = self._tag_offset(self.RATN_TAG, self.ACK_TAG, tag)
 self._comm.send(ack, dest=0, tag=ack_tag)

 # If acknowledgement is bad, don't receive
 if not ack:
 return None

 # Receive the data from the manager
 if msg['buffer']:
 npy_tag = self._tag_offset(self.RATN_TAG, self.NPY_TAG, tag)
 recvd = self._numpy.empty(msg['shape'], dtype=msg['dtype'])
 self._comm.Recv(recvd, source=0, tag=npy_tag)
 else:
 pyt_tag = self._tag_offset(self.RATN_TAG, self.PYT_TAG, tag)
 recvd = self._comm.recv(source=0, tag=pyt_tag)
 return recvd
 else:
 err_msg = 'Rationing cannot be used in 1-rank parallel operation'
 raise RuntimeError(err_msg)

[docs] def collect(self, data=None, tag=0):
 """
 Send data from a 'worker' rank to the 'manager' rank.

 If the calling MPI process is the 'manager' rank, then it will
 receive and return the data sent from the 'worker'. If the calling
 MPI process is a 'worker' rank, then it will send the data to the
 'manager' rank.

 For each call to this function on a given 'worker' rank, there must
 be a matching call to this function made on the 'manager' rank.

 NOTE: This method cannot be used for communication between the
 'manager' rank and itself. Attempting this will cause the code to
 hang.

 Keyword Arguments:
 data: The data to be collected asynchronously
 on the 'manager' rank.
 tag (int): A user-defined integer tag to uniquely
 specify this communication message

 Returns:
 tuple: On the 'manager' rank, a tuple containing the source rank
 ID and the the data collected. None on all other ranks.

 Raises:
 RuntimeError: If executed during a serial or 1-rank parallel run
 """
 if self.get_size() > 1:
 if self.is_manager():

 # Receive the message from the worker
 msg_tag = self._tag_offset(self.CLCT_TAG, self.MSG_TAG, tag)
 msg = self._comm.recv(source=self._mpi.ANY_SOURCE, tag=msg_tag)

 # Check the message content
 ack = type(msg) is dict and all(
 [key in msg for key in ['rank', 'buffer', 'shape', 'dtype']]
)

 # Send acknowledgement back to the worker
 ack_tag = self._tag_offset(self.CLCT_TAG, self.ACK_TAG, tag)
 self._comm.send(ack, dest=msg['rank'], tag=ack_tag)

 # If acknowledgement is bad, don't receive
 if not ack:
 return None

 # Receive the data
 if msg['buffer']:
 npy_tag = self._tag_offset(self.CLCT_TAG, self.NPY_TAG, tag)
 recvd = self._numpy.empty(msg['shape'], dtype=msg['dtype'])
 self._comm.Recv(recvd, source=msg['rank'], tag=npy_tag)
 else:
 pyt_tag = self._tag_offset(self.CLCT_TAG, self.PYT_TAG, tag)
 recvd = self._comm.recv(source=msg['rank'], tag=pyt_tag)
 return msg['rank'], recvd

 else:

 # Create the handshake message
 msg = {}
 msg['rank'] = self.get_rank()
 msg['buffer'] = self._is_bufferable(data)
 msg['shape'] = data.shape if hasattr(data, 'shape') else None
 msg['dtype'] = data.dtype if hasattr(data, 'dtype') else None

 # Send the handshake message to the manager
 msg_tag = self._tag_offset(self.CLCT_TAG, self.MSG_TAG, tag)
 self._comm.send(msg, dest=0, tag=msg_tag)

 # Receive the acknowledgement from the manager
 ack_tag = self._tag_offset(self.CLCT_TAG, self.ACK_TAG, tag)
 ack = self._comm.recv(source=0, tag=ack_tag)

 # Check the acknowledgement, if not OK skip
 if not ack:
 return

 # If OK, send the data to the manager
 if msg['buffer']:
 npy_tag = self._tag_offset(self.CLCT_TAG, self.NPY_TAG, tag)
 self._comm.Send(data, dest=0, tag=npy_tag)
 else:
 pyt_tag = self._tag_offset(self.CLCT_TAG, self.PYT_TAG, tag)
 self._comm.send(data, dest=0, tag=pyt_tag)
 else:
 err_msg = 'Collection cannot be used in a 1-rank communicator'
 raise RuntimeError(err_msg)

[docs] def divide(self, group):
 """
 Divide this communicator's ranks into groups.

 Creates and returns two (2) kinds of groups:

 (1) groups with ranks of the same color ID but different rank IDs
 (called a "monocolor" group), and

 (2) groups with ranks of the same rank ID but different color IDs
 (called a "multicolor" group).

 Parameters:
 group: A unique group ID to which will be assigned an integer
 color ID ranging from 0 to the number of group ID's
 supplied across all ranks

 Returns:
 tuple: A tuple containing (first) the "monocolor" SimpleComm for
 ranks with the same color ID (but different rank IDs) and
 (second) the "multicolor" SimpleComm for ranks with the same
 rank ID (but different color IDs)

 Raises:
 RuntimeError: If executed during a serial or 1-rank parallel run
 """
 if self.get_size() > 1:
 allgroups = list(self._comm.allgather(group))
 color = allgroups.index(group)
 monocomm = SimpleCommMPI()
 monocomm._color = color
 monocomm._group = group
 monocomm._comm = self._comm.Split(color)

 rank = monocomm.get_rank()
 multicomm = SimpleCommMPI()
 multicomm._color = rank
 multicomm._group = rank
 multicomm._comm = self._comm.Split(rank)

 return monocomm, multicomm
 else:
 err_msg = 'Division cannot be done on a 1-rank communicator'
 raise RuntimeError(err_msg)

 Source code for asaptools.timekeeper

"""
A module containing the TimeKeeper class.

This module contains is a simple class to act as a time keeper for internal
performance monitoring (namely, timing given processes).

Copyright 2020 University Corporation for Atmospheric Research

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""

from time import time

[docs]class TimeKeeper(object):

 """
 Class to keep timing recordings, start/stop/reset timers.

 Attributes:
 _time: The method to use for getting the time (e.g., time.time)
 _start_times (dict): A dictionary of start times for each named timer
 _accumulated_times (dict): A dictionary of the total accumulated times
 for each named timer
 _added_order (list): A list containing the name of each timer, in the
 order it was added to the TimeKeeper
 """

 def __init__(self, time=time):
 """
 Constructor.

 Keyword Arguments:
 time: The function to use for measuring the time. By default,
 it is the Python 'time.time()' method.
 """

 # The method to use for time measurements
 self._time = time

 # Dictionary of start times associated with a string name
 self._start_times = {}

 # Dictionary of accumulated times associated with a string name
 self._accumulated_times = {}

 # List containing the order of the timers
 # (when added to the dictionaries)
 self._added_order = []

[docs] def reset(self, name):
 """
 Method to reset a timer associated with a given name.

 If the name has never been used before, the timer is created and the
 accumulated time is set to 0. If the timer has been used before, the
 accumulated time is set to 0.

 Parameters:
 name: The name or ID of the timer to reset
 """

 # Reset the named timer (creates it if it doesn't exist yet)
 if name not in self._added_order:
 self._added_order.append(name)
 self._accumulated_times[name] = 0.0
 self._start_times[name] = self._time()

[docs] def start(self, name):
 """
 Method to start a timer associated with a given name.

 If the name has never been used before, the timer is created and
 the accumulated time is set to 0.

 Parameters:
 name: The name or ID of the timer to start
 """

 # Start the named timer (creates it if it doesn't exist yet)
 if name not in self._accumulated_times:
 self.reset(name)
 else:
 self._start_times[name] = self._time()

[docs] def stop(self, name):
 """
 Stop the timing and add the accumulated time to the timer.

 Method to stop a timer associated with a given name, and adds
 the accumulated time to the timer when stopped. If the given timer
 name has never been used before (either by calling reset() or start()),
 the timer is created and the accumulated time is set to 0.

 Parameters:
 name: The name or ID of the timer to stop
 """

 # Stop the named timer, add to accumulated time
 if name not in self._accumulated_times:
 self.reset(name)
 else:
 self._accumulated_times[name] += self._time() - self._start_times[name]

[docs] def get_names(self):
 """
 Method to return the clock names in the order in which they were added.

 Returns:
 list: The list of timer names in the order they were added
 """
 return self._added_order

[docs] def get_time(self, name):
 """
 Returns the accumulated time of the given timer.

 If the given timer name has never been created, it is created and the
 accumulated time is set to zero before returning.

 Parameters:
 name: The name or ID of the timer to stop

 Returns:
 float: The accumulated time of the named timer (or 0.0 if the
 named timer has never been created before).
 """

 # Get the accumulated time
 if name not in self._accumulated_times:
 self.reset(name)
 return self._accumulated_times[name]

[docs] def get_all_times(self):
 """
 Returns the dictionary of accumulated times on the local processor.

 Returns:
 dict: The dictionary of accumulated times
 """
 return self._accumulated_times

 Source code for asaptools.vprinter

"""
A module containing the VPrinter class.

This module contains the VPrinter class that enables clean printing to
standard out (or a string) with verbosity-level print management.

Copyright 2020 University Corporation for Atmospheric Research

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""

from __future__ import print_function

[docs]class VPrinter(object):

 """
 A Verbosity-enabled Printing Class.

 The VPrinter is designed to print messages to standard out, or optionally
 a string, as determined by a pre-set verbosity-level and/or on which
 parallel rank the VPrinter is instantiated.

 Attributes:
 header (str): A string to prepend to any print messages before
 they are printed
 verbosity (int): The verbosity level to use when determining if a
 message should be printed
 """

 def __init__(self, header='', verbosity=1):
 """
 Constructor - Creates an instance of a VPrinter object.

 Keyword Arguments:
 header (str): A string to prepend to any print messages before
 they are printed
 verbosity (int): The verbosity level to use when determining if a
 message should be printed
 """
 # The message header to prepend to messages if desired
 self.header = header

 # The verbosity level for determining if a message is printed
 self.verbosity = verbosity

[docs] def to_str(self, *args, **kwargs):
 """
 Concatenates string representations of the input arguments.

 This takes a list of arguments of any length, converts each argument
 to a string representation, and concatenates them into a single string.

 Parameters:
 args (list): A list of arguments supplied to the function. All
 of these arguments will be concatenated together.

 Keyword Arguments:
 kwargs (dict): The dictionary of keyword arguments
 passed to the function.

 Returns:
 str: A single string with the arguments given converted to strings
 and concatenated together (in order). If the keyword
 'header==True' is supplied, then the 'header' string is
 prepended to the string before being output.

 Raises:
 TypeError: If the 'header' keyword argument is supplied and is
 not a bool
 """
 out_args = []
 if 'header' in kwargs:
 if type(kwargs['header']) is bool:
 if kwargs['header']:
 out_args.append(self.header)
 else:
 raise TypeError('Header keyword argument not bool')
 out_args.extend(args)

 return ''.join([str(arg) for arg in out_args])

 def __call__(self, *args, **kwargs):
 """
 Print the supplied arguments to standard out.

 Prints all supplied positional arguments to standard output, if the
 message verbosity is less than the VPrinter's verbosity level. Can
 also print a useful header based on the parallel rank and size.

 Parameters:
 args (list): A list of arguments supplied to the function. All
 of these arguments will be concatenated together.

 Keyword Arguments:
 kwargs (dict): The dictionary of keyword arguments
 passed to the function.

 Returns:
 None: However, if the 'verbosity' keyword argument is supplied,
 and the 'verbosity' value is less than the VPrinter object's
 'verbosity' attribute, then it prints to stdout. Like
 the 'to_str' method, if the 'header' keyword is supplied and
 equal to 'True', then it prepends the output with the header.
 """
 verbosity = 0
 if 'verbosity' in kwargs and type(kwargs['verbosity']) is int:
 verbosity = kwargs['verbosity']

 if verbosity < self.verbosity:
 print(self.to_str(*args, **kwargs))

 nav.xhtml

 Table of Contents

 		
 Welcome to the ASAP Python Toolbox’s documentation!

 		
 The ASAP Python Toolbox

 		
 Overview

 		
 Dependencies

 		
 Easy Installation

 		
 Obtaining the Source Code

 		
 Building & Installation

 		
 Instructions & Use

 		
 asaptools package

 		
 Submodules

 		
 asaptools.vprinter module

 		
 asaptools.timekeeper module

 		
 asaptools.partition module

 		
 asaptools.simplecomm module

 		
 Change Log

 		
 Version 0.7.0

 		
 Version 0.6.0

 		
 Version 0.5.4

 		
 Version 0.5.3

 		
 Version 0.5.2

 		
 Version 0.5.1

 		
 Version 0.5.0

 		
 Version 0.4.2

 		
 Version 0.4.1

 		
 Version 0.4

 		
 Version 0.3

 		
 Product License

_static/file.png

_static/minus.png

_static/plus.png

